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Entrepôt: Hubs, Scale, and Trade Costs†

By Sharat Ganapati, Woan Foong Wong, and Oren Ziv*

We study the global trade network and quantify its trade and wel-
fare impact. We document that the trade network is a hub-and-spoke 
system where 80 percent of trade is shipped indirectly and largely 
via entrepôts—major hubs that facilitate trade between many ori-
gins and destinations. We estimate indirect-shipping-consistent trade 
costs using a model where shipments can be sent indirectly through 
an endogenous transport network and develop a geography-based 
instrument to estimate scale economies in shipping. Network 
and scale effects propagate local trade cost changes globally. 
Counterfactual infrastructure improvements at entrepôts gener-
ate ten times the global welfare impact relative to nonentrepôts.  
(JEL F12, F14, L92)

Exchanging goods over borders involves more than production and consumption: 
shipping, transshipping, and distribution can include multiple agents and addi-

tional countries beyond producers and consumers. These activities are concentrated 
at entrepôts––trading hubs that goods travel through and from other origins and  are 
bound for other destinations. The idea that entrepôts are integral to the trade net-
work and are engines of growth has been the impetus behind many policies aimed 
at attaining or maintaining entrepôt status (Smith 2015; Nidhi and Das 2016; Paris 
2021).

This paper studies entrepôts, the trade network they form, and their impact 
on international trade. Using novel data on the trade network and developing a 
quantitative general equilibrium spatial trade model, we answer the following  
questions: (i) How do goods move from their origins to their destinations and 
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what role do entrepôts play in facilitating this process? (ii) What trade costs and 
scale economies can explain the observed routes that goods take and the existence 
of entrepôts? (iii) How does this pattern of trade through entrepôts impact global 
and regional trade as well as welfare?

We start by constructing a new dataset mapping the journeys that containerized 
shipments take through the global trading network. This microdata allows us to 
observe indirect trade, which we define as trade journeys that make stops with the 
shipment either on-board or transshipped—transferred onto a ship—at additional 
countries beyond the shipment’s origin and destination.

Our first contribution is to establish two stylized facts about the global trade net-
work. Our first stylized fact is that the majority of trade—80 percent—is shipped 
indirectly. The median shipment stops at two additional countries before reaching 
its destination. The majority of trade is also transshipped via an additional country 
before its destination. This indirectness is not incidental and significantly increases 
shipping times and distances.

Our second stylized fact is that indirectness is incredibly concentrated, with over 
90 percent of indirect trade channelled through a small number of entrepôts, estab-
lishing a hub-and-spoke network. These facts highlight a trade-off and trace the 
existence of a potential scale-cost relationship: indirect trade concentrated through 
entrepôts increases the observable distance and time costs of trade, but by revealed 
preference, it implies lower trade costs, especially for the spokes of the network that 
disproportionately choose to ship via entrepôts.

In order to rationalize the documented direct and indirect trade through the global 
trading network, we build a general equilibrium model of trade with entrepôts 
and endogenous trade costs that flexibly accommodates input-output linkages. 
Producers choose shipping routes and compete for foreign consumers in a general-
ized Ricardian setting. Low-cost routes can involve indirect shipping through addi-
tional countries, and entrepôts endogenously arise where trade costs are lowest. We 
allow for both scale economies and diseconomies to govern shipping costs on these 
network links.

Our second contribution is to use our model to estimate a global set of 
indirect-shipping consistent trade costs and the economies of scale in shipping. 
Expanding from our microdata to global seaborne container shipping and trade data, 
our estimation yields trade costs for each link of the global shipping network and a 
global set of model-consistent origin-destination trade costs that are distinct from typ-
ical distance-based costs. We establish the validity of both our estimates and modeling 
approach by finding a tight match between our estimated trade costs and external 
freight rate data, as well as between our model-predicted network flows and microdata 
on shipment journeys. Our trade cost estimates are publicly available online.

We use a geography-based instrument to identify the causal effect of increasing 
shipping volumes on decreasing trade cost using an instrumental variable approach. 
Embedded in our model is the intuition that some links have inherently higher traffic 
because of their geographic position in the network. For example, links that include 
Singapore are close to the lowest-distance route between many European and Asian 
countries due to Singapore’s location in the Strait of Malacca. For each link, we 
compute the distance to and from the link relative to the shortest distance between 
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each origin and destination, recovering a weighted average of each link’s proximity 
to global trade. Increasing traffic volume on a link by 1 percent reduces costs by 
0.06 percent. As the typical journey in our microdata has 2.5 links, a 10 percent 
increase in overall origin-destination trade translates into a 0.17 percent decrease in 
trade costs.

Our third contribution uses our estimates and model to quantify the impact of the 
trade network on global trade and welfare, highlighting how trade cost changes at 
node countries—entrepôts and nonentrepôts—as well as links can have widespread 
impacts through the network that are subsequently magnified due to scale econo-
mies. Our main counterfactual quantifies the trade and welfare benefits of transport 
infrastructure improvements for each country in our sample. Entrepôts are pivotal 
to the global trade network: welfare impacts of infrastructure investment are, on 
average, 10 times higher at entrepôts than nonentrepôts. Conflating transport and 
nontransport  trade costs  impacts estimated welfare effects by an order of magnitude. 
This is especially true at entrepôts, which differentially concentrate infrastructure 
improvement benefits locally relative to nonentrepôts. Scale economies in transpor-
tation further concentrate these gains locally at and around entrepôts, highlighting 
that scale economies in transportation act as a source of agglomeration. We establish 
that Singapore and Egypt (the Suez Canal) are the top two most pivotal locations 
in the trade network, as reflected by the strain in global supply chains when Egypt 
was blocked in March 2021 (Paris and Malsin 2021; Sheppard, Dempsey, and Saleh 
2021; Gambrell and Magdy 2021).

Our second counterfactual investigates how nontransportation cost changes at 
an entrepôt can have widespread impacts beyond the countries that are directly 
impacted through endogenous adjustments in trade network. We illustrate this 
by studying the ramifications of worsening trade relations between one hub––the 
United Kingdom––and its trading partners—Brexit. When only considering the 
direct impact of increased nontransportation trade costs, Brexit’s consequences are 
largely proportional to a country’s direct trade exposure with the United Kingdom. 
When our analysis accounts for the impact of scale economies on the trade network, 
we find that smaller countries like Ireland and Iceland that use the United Kingdom 
as an entrepôt to access all other trading partners are disproportionately hurt (as 
recognized in Financial Times 2020). This illustrates how trade network and scale 
interactions can lead to distinct distributional outcomes in welfare even when the 
initial changes are unrelated to transport.

Our last counterfactual evaluates the importance of endogenous trade costs by 
demonstrating the welfare and trade impacts from the two endogenous mechanisms 
in our model: (i) network effects—allowing countries to ship indirectly––and (ii) 
scale effects—allowing countries to ship indirectly and take advantage of scale econ-
omies. To illustrate this, we study the effects of opening up the Arctic Ocean to reg-
ular year-round shipping, connecting countries in East Asia and Europe. Allowing 
for network effects doubles the welfare relative to a naïve exogenous trade cost case 
with no network effects, and allowing for scale economies triples the welfare rela-
tive to the network effects case.

This paper ties two broad literatures together, combining detailed microdata on 
the flow of goods through the trade network with a structural model of trade and 
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transportation. The first dives deeply into the technology underpinning the fundamen-
tals of international trade, such as container shipping and infrastructure investment 
(Coşar and Demir 2018). The second considers the geography and cost structures 
of transportation networks within a class of gravity models (Head and Mayer 2014; 
Allen and Arkolakis 2022).

With regard to the technologies underpinning trade, we make two contributions. 
First, a wide literature shows how both containerization and infrastructure invest-
ments have local outcomes (Heiland et al. 2019; Ducruet et al. 2019; Wong 2022; 
Coşar and Demir 2018; Bernhofen, El-Sahli, and Kneller 2016; Rua 2014).1 We 
demonstrate the global welfare impacts of the container shipping network, which 
accounts for two-thirds of annual trade moved by sea (World Shipping Council 
2018). Using our general equilibrium spatial trade framework, our counterfactuals 
show how endogenous changes in trade costs propagate via the network and through 
entrepôts as well as quantify their trade and welfare impacts. Allowing for network 
effects double the welfare relative to a baseline case with no network effects and 
allowing for the effect of scale economies further triples welfare impacts.2

Second, we explore the general equilibrium effects of scale economies in ship-
ping. For the median route into the United States, our leg-level scale economy 
implies that a 10 percent increase in volume leads to a 1.7 percent decrease in costs.3 
The role of localized scale economies in production is well known in general (Allen 
and Arkolakis 2014; Allen and Donaldson 2018) and in the context of trade in par-
ticular (Lashkaripour and  Lugovskyy 2023; Bartelme et  al. 2019; Kucheryavyy, 
Lyn, and Rodríguez-Clare 2019). In these settings, scale economies typically gener-
ate agglomerations by acting on local productivity. By contrast, in our setting, scale 
economies generate agglomerations by affecting trade costs. Our counterfactuals 
find that, by acting on endogenous transport costs over the network, scale economies 
further concentrate transportation,trade, and welfare gains at entrepôts.

With respect to the geography and structure of the trade network, we make two con-
tributions. First, we provide empirical evidence for a growing quantitative literature 
investigating the role of trade networks (Allen and Arkolakis 2022; Fajgelbaum and 
Schaal 2020; Redding and Turner 2015). We provide the first systematic documenta-
tion of indirect trade through the containerized shipping network and the pivotal role 

1 Hummels, Lugovskyy, and Skiba (2009); Grant and Startz (2022); and Asturias (2020) study transport costs 
in the context of market power. While container shipping firms may hold market power, we generalize away from 
the profits of the shipping companies. Models allowing for leg-level oligopoly, fixed costs, and endogenous entry 
competition fit within our framework (Sutton 1991), but we leave the study of how market power works through the 
hub-and-spoke network for future study.

2 Allen and Arkolakis (2022) studies the endogeneity of trade costs to traffic congestion on highways. We find 
the presence of scale economies in shipping. Brancaccio, Kalouptsidi, and Papageorgiou (2020) studies two aspects 
of trade cost endogeneity for the network of dry bulk ships carrying homogeneous commodities where all trade is 
direct: the loading opportunities of dry bulk ships after delivering their cargo relative to the country’s trade balance 
(the equilibrium bargaining position of these ships) and the trade balance of neighboring countries (the network 
effects). Wong (2022) focuses on the round trip effect from container shipping: a bilateral trade cost endogeneity.

3 Our estimate is about three-quarters of the estimates in Asturias (2020) and Skiba (2017). Asturias (2020) 
reports an origin-destination country trade-volume trade-cost elasticity of 0.23 while Skiba (2017) reports an elas-
ticity of 0.26 using product-level import data from Latin America. See also Alder (2015); Holmes and Singer 
(2018); and Anderson, Vesselovsky, and Yotov (2016).
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that entrepôts play within this network.4 Our microdata on the movement of shipments 
through the trade network document the widespread nature of indirect trade and its 
concentration. In contemporaneous work, Heiland et  al. (2019) studies the impact 
of the Panama Canal expansion on global ship movements and uses model-based 
imputations to estimate the physical movement of goods. We further estimate a set 
of network-consistent trade costs, distinct from and more predictive of trade than dis-
tance. Finally, our counterfactuals demonstrate how transport costs behave differently 
from nontransport costs, particularly at entrepôts. For example, Egypt ranks top two 
in terms of global welfare impacts from infrastructure improvements, while it is not 
among the top 20 in terms of the welfare impacts from nontransportation trade cost 
reductions.

Second, our model embeds transportation networks within a class of gravity 
models (Head and Mayer 2014). We extend the Armington framework in Allen and 
Arkolakis (2022)—where route cost shocks are born by consumers—to a general 
Ricardian setting—where traffic volumes reflect both route choice and head-to-head 
competition on prices at destinations and demonstrate how to estimate the model in 
a multi-industry setting with nontransport barriers to trade and in the presence of 
unobserved traffic flows. Methodologically, we adopt an approach from the litera-
ture on marginal cost estimation (Ackerberg et al. 2007), combining market level 
data and exogenous instruments with equilibrium assumptions—the indirect routing 
of trade in our case, or market conduct in the Industrial Organization literature’s 
case—to recover unobserved costs. We establish that our estimates reflect actual 
costs and indirect flows by comparing our model predictions to external cost esti-
mates, ship sizes, and observed trade routes in our microdata. These results serve 
as a check to the validity of the Allen and Arkolakis (2022) framework within the 
international trade setting.

I.  Data

Our paper uses two distinct sets of data. To establish the stylized facts of the 
international trade network (Section II), we use a microdata on the detailed journey 
of US-bound shipments. To estimate global trade costs that are network consistent 
(Section IV), we use global data on trade and shipping traffic.

To construct the microdata on US shipments, we merge two proprietary datasets: 
global ports of call data for containerships, which allow us to reconstruct the routes 
taken by specific ships, and the US bill of lading data for containerized imports, 
which gives us shipment-level information on US imports. Independently, these 
datasets partially describe the global shipping network. Merged, they reconstruct the 
journey of individual shipments as they navigate the trade network from their origin 
to their US port of entry. To our knowledge, we provide the most comprehensive 

4 The emergence of entrepôts as hubs in geographically advantageous locations is consistent with the findings 
of Barjamovic et al. (2019). This is related to studies of airlines hub-and-spoke networks. This literature takes large 
parts of the network as fixed (Berry 1992) or is restricted to simple entry games (Ciliberto and Tamer 2009).
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reconstruction of the global trading network and routes undertaken by individual 
shipments into the United States.5

Our ports of call data capture vessel movements using automatic identification 
system (AIS) transponders.6 For each vessel, these data capture the vessel’s char-
acteristics, time-stamped ports of call, capacity, and height in the water before and 
after stopping at each port. The latter two pieces of information indicate the vessel’s 
load at these ports, allowing us to observe volumes shipped between port pairs. We 
measure volume in twenty-foot equivalent container units (TEUs).

Our sample covers 4,986 unique container ships with a combined capacity of 
30.6 million TEUs—over 90 percent of the global container shipping fleet—making 
397,625 calls at 1,230 ports from April to October 2014. Figure 1 shows the cover-
age of the shipping network in our port of call data. Each line represents a contain-
ership journey. We use these global data along with Centre d’études Prospectives et 
d’Informations Internationales (CEPII) global trade data—aggregated into contain-
erized and noncontainerized industries according to the procedure outlined in online 
Appendix A.3—to estimate our model in Section IV.

With these port of call data alone, shipment journeys within the trading network 
remain unobserved. We do not observe containers being loaded or unloaded. To 
remedy this, we merge the port of call data with US bills of lading data, which 
capture shipment-level information for all containerized imports. We observe each 
shipment’s origin country, the port where they are loaded onto containerships 
(also known as port of lading), and the US port where they are unloaded (port of 
unlading). We observe the name and identification number of the containership 

5 Online Appendix A.1 explains both datasets and their merge procedure in detail.
6 Port receivers collect and share AIS transponder information (including ship name, speed, height in water, 

latitude, and longitude). Using Astra Paging (2014) data, we track global port entry and exit data.

Figure 1. Global Network of Ships and Ports of Call Data

Notes: Dots represent 1,230 ports. Lines represent journeys between port pairs undertaken by a containership (total 
of 4,986 ships). We show direct distances here. Analysis uses sea-route distance.

https://pubs.aeaweb.org/action/showImage?doi=10.1257/mac.20220250&iName=master.img-000.jpg&w=373&h=176
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that transported the shipment as well as the shipment’s weight, number of TEUs, 
and product information. Over the same six-month period, we see a total of 14.8 
million TEUs weighting 106 million tons were imported into the United States 
from 227 origin countries and loaded onto US-bound containerships (laded) in 
144 countries. This accounts for about three quarters of the 2014 TEU and tonnage 
imports––77 percent and 74 percent respectively (Maritime Administration 2018).

Using details on containerships, ports, and arrival times, we reconstruct each 
shipment’s journey from its foreign origin to its US destination by matching each 
shipment to the containership that it was transported on (online Appendix Figure 
A.1 visualizes this merge). While the shipments’ exact journey between origin and 
the first stop (the port where they are loaded onto containerships) remain unob-
served, this initial portion can either take place overland (by trucks or rail) or by sea 
on another containership because they are containerized. Not observing this portion, 
in fact, leads us to undercount the overall level of indirectness. We empirically deal 
with unobserved transit in Section IV.

II.  Stylized Facts

We analyze the international trade network and the routes taken by goods entering 
the United States along that network. We find that the majority of trade takes place 
indirectly in a manner that is costly—increasing both shipping time and distance 
traveled. We further show that the global trade network is a hub-and-spoke system, 
concentrating a large number of shipments through a small number of entrepôts.

A. The Majority of Trade Is Indirect

Panel A in Figure 2 reports the distribution of the number of observed country 
stops made by each shipment, weighted by TEU containers. Only 20 percent of 
containers are exported to the United States directly from their origin countries, 
making no stops in between. The average container entering the United States stops 
at around two third-party countries that are neither the origin nor destination.7 The 
map in Figure 2, panel B shows that this is also true at the country level: the majority 
of US trading partners export to it indirectly. Only shipments from nine countries 
typically enter the United States directly.8 Similarly, the average shipment from a 
majority of US trading partners is transshipped in a third-party country—60 percent 
of US trading partners transship more than 90 percent of their US-bound goods.9 
Figure A.5 reports the percent of goods transshipped at third-party countries.

We explore the high degree of variation in connectivity in online Appendix B.4, 
showing that this variation is, in part, explained by traditional gravity variables. We 

7 Mean of 1.5 and standard deviation of 1.3. Landlocked countries are excluded. The average number of port 
stops is higher (Figure A.3, mean of 4.6 and standard deviation of 3.5). This result is robust for shipment weight and 
value (Figure A.4). Multiple stops at the same third-party country are not counted.

8 These countries are Canada, Mexico, Panama, Japan, South Korea, Spain, Portugal, South Africa, and New 
Zealand. We treat mainland China, Hong Kong, Taiwan, and Macau as separate locations.

9 Both on-board stops and transshipment are important measures of indirect trade. For completeness, all results 
are broken out here or in the online appendix using transshipment only. Examples of countries transshipping more 
than 90 percent of goods include Denmark, Bangladesh, Cambodia, and Ecuador. 
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show that there is substantial variation in routes from unique origins into the United 
States, which is an important assumption in our model and is used in our validity 
checks (online Appendix Figure A.9, panel B).

Indirect Trade Increases Shipping Distances and Time.––Are the additional coun-
try stops simply incidental stops along the way, or do they constitute a trip that is 
distinct from a direct path? One possibility is that the observed indirectness is opti-
mal but only incidental—perhaps additional stops only have small effects on costs, 
and therefore may be optimal, even if the benefit of indirectness is small. As an 
example, goods transiting the Strait of Malacca can perhaps stop at Singapore since 
it is on the way. However, the significant additional distance and time incurred by 
indirect travel relative to the direct path, documented here, implies this is unlikely 
to be the case.

On average, the actual traveled distance between a shipment’s origin and its US 
destination is 31 percent more than its direct ocean distance (panel A in Figure 3). 
Panel B shows the actual traveled distance between the location where the shipment 
was last loaded onto a ship and its final destination. Here, the remaining gap is still 
substantial at 23 percent. Online Appendix Table A.1 further evaluates the relation-
ship between indirectness and journey length. Controlling for direct journey length 
or origin-by-destination fixed effects, doubling the number of stops adds 10 percent 
to distance traveled and 33 percent to time traveled (columns 2 and 5 in online 
Appendix Table A.1, respectively). These distance and time costs do not include 
pecuniary costs of transshipment. Consequently, this indirectness is meaningful in 
the sense that it is costly. These longer shipping routes imply a cost reduction from 

Figure 2. Indirect Trade Distributions by Container and Country

Notes: Panel A shows the distribution of containers by number of unique third-party countries visited. In panel B, 
for each origin country, we calculate the average number of third-party country. The destination country (United 
States) is excluded (in white). Plots are at the shipment level and weighted by the aggregate exported containers 
(TEU). Landlocked countries are also excluded (in white), since they would mechanically need to stop at a coastal 
country. The missing remaining countries are excluded either due to lack of overall trade with the United States 
(e.g., Somalia) or due to the merge process (e.g., Namibia).
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indirectness that is over and above the additional time and distance costs. From 
these results, we can summarize our first stylized fact:

Stylized Fact 1: The majority of containerized trade into the United States is indi-
rect and results in a significant increase in shipping distance and time.

B. Indirect Trade Is Routed through Entrepôts

When shipments stop in third-party countries, how are they routed? We show that 
the stops along indirect shipping routes are not arbitrarily distributed throughout the 
world. Instead, they are channelled through a small number of hubs, which dispro-
portionately service shipments originating in other countries.

Panel A of Figure 4 plots each country’s share of total third-party country stops 
against its share of total US trade. Some locations are both popular stopping points 
and major countries of origin for goods like China, Germany, and Japan. Key coun-
tries like Korea, Singapore, Panama, and Egypt disproportionately participate as 
third-party countries in US-bound shipments.10 This leads to our measure of 
entrepôt activity:

(1)	​ Entrep​o ˆ ​​t​l, j​​  ≡ ​ π​ j​ 
l​ − ​π​l, j​​​

10 Figure A.6 tabulates the percent of all goods entering the United States stopping in that country, broken into 
goods originated there and elsewhere.

Figure 3. Difference between Observed Distance and Direct Distance

Notes: These figures show only indirect shipments with different direct and observed distances. Dots are shipments, 
shaded by TEU. Panel A compares the direct shipping distance from the shipment’s origin country to the United 
States with the actual route traveled. Panel B compares the direct distance from the place a shipment was last loaded 
onto a US-bound ship (Stop 1 in online Appendix Figure A.1) with the actual route traveled. Sea distances for 
observed and direct routes are calculated using Dijkstra’s algorithm. The local linear fit line is a locally weighted 
regression of the observed on direct pair-wise distance.
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where country ​j​’s usage of entrepôt ​l​ for its imports is the difference between ​​π​ j​ 
l​​––the 

share of ​j​’s imports flowing through ​l​––and ​​π​l, j​​​––the share of ​j​’s imports originating 
at ​l​. This captures the use of location ​l​ above and beyond its role as an exporter to ​j​.11

Panel B of Figure 4 repeats the exercise in panel A using global traffic minus 
trade shares.12 While the results are broadly consistent with the microdata in 
panel A, some countries such as Canada and Panama that are specifically integral 
to the US network are now below or closer to the 45-degree line. In both panels, 
third-party country stops (the y-axes) are significantly more concentrated than trade 
(the x-axes).13 Our measure of entrepôt activity in equation (1) is the distance to the 
45-degree line. Online Appendix Table A.2 lists our measure for all the countries 
and territories in our data, normalized by the value of the country with the lowest 
measure: the United States.

Definition of Entrepôts.––We define the top 15 countries using this metric as 
our set of global entrepôts, a natural break after which the measure rapidly flattens 
(online Appendix Table A.2). This list of 15 includes several well-known global 
hubs, but our results are robust to changes in this threshold as well as to using a con-
tinuous measure.14 This threshold and definition will be used again in counterfactual 

11 ​Entrep​o ˆ ​​t​l, j​​​ is directly proportional to the total volume of goods moving through ​l​ that do not originate at ​l​.  
Online Appendix C shows how this measure arises from our model as the difference between ​l​’s on-board mar-
ginal cost selling to ​j​ and its network relation to ​j​, and that lowering location ​l​’s leg-level transport costs to other 
origins increases ​Entrep​o ˆ ​ ​t​l, j​​​. Our results here and throughout are robust to other functional forms—for example 
log differences.

12 We subtract country ​l​’s share of observed global containerized trade ​​π​l​​​ from its observed share of global 
container traffic ​​π​​ l​​, with an adjustment for unobserved overland traffic as described in Section IV. Online Appendix 
C clarifies how this is a consistent aggregation of the country-level measure in equation (1).

13 Table A.3 reports the concentration ratios for trade, transshipment, and third-party-country stops. 
14 Our set of global entrepôts are: Egypt, Singapore, Netherlands, Hong Kong, Belgium, Taiwan, Spain, Saudi 

Arabia, South Korea, the United Arab Emirates, Morocco, Panama, Malta, Portugal, and the United Kingdom.

Figure 4. Concentration of Indirect Shipments

Notes: Panel A uses US microdata to compare, for each country, the share of US imports that originated in a coun-
try (x-axis) to the the share that passed through that country (y-axis), weighted by TEU. For readability, China is 
omitted in panel A. Panel B replicates panel A using global port of call and trade data with adjustments made for 
unobserved overland traffic as discussed in Section IV.
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analyses, where we explore the impacts of cost changes at these hubs. For US ship-
ments, we see 73 percent of all shipments pass through at least one entrepôt. Of 
indirect shipments, 92 percent pass through an entrepôt.

Additionally, we find that smaller origin countries disproportionately use 
entrepôts. They are simultaneously more likely to ship their goods indirectly and 
more likely to use entrepôts (see online Appendix B.3 and Figure A.7 for further 
details). Jointly, this confirms that smaller countries are spokes that disproportion-
ately use entrepôts for their trade.15 These relationships can be summarized in our 
second stylized fact:

Stylized Fact 2: Indirect shipping routes are concentrated through entrepôts. 
International trade occurs over a hub-and-spoke network.

Our two facts outline an inherent trade-off: indirectness increases observable 
distance and time costs of trade, but by revealed preference, implies lower costs, 
especially for the spokes of the network that disproportionately choose to send 
goods indirectly through entrepôts.16 The goal of our empirical estimation is to 
measure this trade-off within the context of the full global trading network by 
finding a set of node-to-node costs that describes the shipping network and is con-
sistent with the indirect trade we observe.

These facts also trace the existence of a size-cost relationship: shipment along 
high-concentration entrepôts routes appears, by revealed preference, to be cost 
reducing. As with any scale-cost relationship, both directions of causation may be 
operational. We model the shipping decision in a way that allows for but does not 
impose a reduced-form scale economy, and in our estimation, identify the causal 
impact of scale on costs.

III.  Theoretical Framework

We present a model of global trade where shipments are sent indirectly through 
an endogenously formed transport network. We embed the Allen and Arkolakis 
(2022) route selection model in a generalized Eaton and Kortum (2002) frame-
work where production technologies in each industry and country are nonstochas-
tic, but idiosyncratic variation in the products’ optimal route generates random 
variation in product-origin pair prices.

Entrepôts emerge as locations where goods pass through but are neither the 
goods’ origin nor their destination. We maintain a production and consumption 
setting that is as general as possible, allowing for any number of goods, indus-
tries, and input-output linkages. This model is agnostic to scale economies or 

15 Section IV addresses the extent to which exogenous characteristics like geography are responsible for lower 
costs at––and hence, higher concentration of shipments through––entrepôts.

16 While some entrepôts lie along lowest-cost routes, routes stopping at entrepôts are 3–9 percent longer. This 
is true even when comparing shipments sent from the same origin, to the same destination, and using the same 
total number of stops, and when comparing total distance traveled as well as distance from port of lading to US 
destination.
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diseconomies in transportation costs, which could work to either amplify or atten-
uate shipments through entrepôts.

A. Setup

Consumption and Production.––In each country ​j​, consumers consume goods ​​
ω​n​​  ∈ ​ Ω​n​​​ from each ​n​ of ​N​ industries according to function ​​U​j​​  = ​ U​j​​​(​C​j​​)​​, where  
​​U​j​​​( · )​​ is a continuous, twice differentiable function and ​​C​j​​​ is a matrix of quantities 
of an arbitrarily large number of goods ​​ω​n​​​ in industry ​n  ∈  N​ in country ​j​. Within 
each industry and product category, goods are homogeneous and normal.17

Goods are produced using a variety of traded and nontraded inputs, including 
labor, capital, and traded and nontraded varieties from any industry. The production 
technology for good ​ω​ is common for all goods in the same industry ​n​ and includes 
a vector of factor inputs ​L​, as well as inputs of other goods.18 Production func-
tions can vary across industries and countries. Cost minimization results in identical 
production costs among competitive firms within an industry in each country. The 
marginal cost of a good ​ω​ is

	​​ c​in​​  ≡ ​ c​in​​​(​z​in​​, ​W​i​​, ​P​i​​)​,​

where ​​P​i​​​ is the matrix of prices of all goods ​ω​ in industries ​n​ in country ​i​, and where ​​
W​i​​​ is the vector of factor prices in country ​i​. Because producers in the same industry 
and country share the same input prices and production function, costs are shared 
within country industries. These costs correspond to the classic Ricardian compar-
ative advantage.

Pricing.––To sell goods abroad at any destination ​j  ∈  J​, a firm producing prod-
uct ​ω​ in industry ​n​ must pay nontransport trade costs ​​κ​ijn​​​ and iceberg transport costs ​​
τ​ijnr​​​(ω)​​ after optimally choosing the route ​r​ between ​i​ and ​j​ to minimize the ship-
ping costs incurred. Competitive firms in ​i​ selling to ​j​ price their goods at marginal 
cost. The observed prices for these products at ​j​ are

	​​ p​ijn​​​(ω)​  = ​ c​in​​ ​κ​ijn​​ ​τ​ijnr​​​(ω)​,​

where purchasers of good ​ω​ in industry ​n​ at ​j​ source the lowest cost supplier globally.

Shipping.––Producers seek to minimize shipping costs, choosing the lowest cost 
shipping route available. Shipping route ​r​ is comprised of ​​K​r​​​ legs of a journey with ​​
K​r​​ − 1​ stops along the way between the origin, ​i​ (or ​k  =  1​), and destination, ​j​ (or ​
k  = ​ K​r​​​).

17 The model and empirics can accommodate arbitrarily fine industry classifications in order to ensure this 
assumption holds.

18 The production function is given by ​​q​in​​​(ω)​  =  ​f​in​​​(​z​in​​, ​L​in​​, ​Q​in​​)​​, where ​​f​in​​​( · )​​ is a continuous and twice differ-
entiable country-industry specific production function, ​​z​in​​​ is the production technology common to industry ​n​ and 
country ​i​, ​​L​in​​​ is a vector of nontradable factor inputs, and ​​Q​in​​​ is a country-industry specific matrix of inputs of other 
goods ​ω​ from all industries. All inputs are treated as homogeneous.
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Following Allen and  Arkolakis (2022), moving stop to stop involves ice-
berg transport costs as well as product- and route-level idiosyncratic cost shocks  
​​ϵ​ijnr​​​(ω)​​.19 We place minimal structure on these direct leg-level costs ​​t​​r​k−1​​,​r​k​​​​​( · )​​ 
between locations ​​r​k−1​​​ and ​​r​k​​​ on route ​r​, allowing them to be a function of exoge-
nous and endogenous variables:

(2)	​​ t​​r​k−1​​,​r​k​​​​  =  f​(Ξ, ​ε​​r​k−1​​,​r​k​​​​)​​,

where ​Ξ​ is a matrix of endogenous containerized traffic over the entire network, and ​​
ε​​r​k−1​​,​r​k​​​​​ reflects exogenous transportation cost elements such as distance.

Route-specific idiosyncratic shocks are drawn from the Fréchet distribution such 
that ​​F​ijn​​​(ϵ)​​, the cumulative distribution function of the idiosyncratic draws, is as 
follows:20

	​​ F​ijn​​​(ϵ)​  ≡  Pr​(​ϵ​ijnr​​​(ω)​  ≤  ϵ)​  =  exp​(− ​ϵ​​ −θ​)​​,

where shape parameter ​θ  >  0​ captures the randomness or dispersion in the choice 
of routes from ​i​ to ​j​.21 Higher ​​ϵ​ijnr​​​(ω)​​ draws mean industry ​n​ has lower costs for 
route ​r​.

Accordingly, product ​ω​’s shipping cost along route ​r​ from country ​i​ to country ​
j​ is

(3)	​​ τ​ijnr​​​(ω)​  = ​   1 _ 
​ϵ​ijnr​​​(ω)​

 ​ ​∏ 
k=1

​ 
​K​r​​

 ​ ​t​​r​k−1​​,​r​k​​​​​(Ξ, ​ε​​r​k−1​​,​r​k​​​​)​​  ≡ ​   1 _ 
​ϵ​ijnr​​​(ω)​

 ​ ​​τ ̃ ​​ijr​​,​

where ​​​τ ̃ ​​ijr​​​ is the product of all leg-specific costs ​​t​​r​k−1​​,​r​k​​​​​(Ξ, ​ε​​r​k−1​​,​r​k​​​​)​​ and is common to 
all products taking route ​r​. Product ​ω​ in industry ​n​’s realized shipping cost from ​i​ 
to ​j​ is that of the transport-cost minimizing route from the set of all routes from ​i​ 
to ​j​.22 We treat ​​t​​k​r−1​​,​k​r​​​​​ in equation (3) as ad valorem, corresponding to the iceberg 
costs typically considered in the literature (Allen and Arkolakis 2022; Fajgelbaum 
and Schaal 2020). To test the validity of this modeling approach, we consider the fit 
between our cost estimates with two sets of external data and find significant cor-
relations (Section VI).23

This structure is consistent with a host of mechanisms, including but not limited 
to port-level effects and leg-level scale economies.24 With regard to market power, 
we do not directly model the decision of shipping firms. Instead, our equilibrium can 

19 Because of the max-stable property of the Frechét distribution, an isomorphic specification would have 
firm-specific cost shocks with a finite mass of potential competitive firms in each country. This would affect the 
interpretation of the source of idiosyncratic variation (firm variation or product variation) and of shape parameter ​θ​.

20 This distribution is identical across industries, so product-industry subscript ​n​ is dropped.
21 This dispersion assumption is reflected in our microdata (panel B in Figure A.9 of online Appendix B.4) 

Almost 70 percent of origin countries have a fairly low concentration of routes (Herfindahl-Hirschman Index less 
than 1,500).

22 The price of a product ​ω​ in industry ​n​ from ​i​ to ​j​ conditional on route ​r​ is ​​p​ijnr​​​(ω)​  =  ​c​in​​ ​κ​ijn​​ ​τ​ijnr​​​(ω)​​.
23 Using an additive cost assumption through the network, Allen and Arkolakis (2022) derives a similar expres-

sion for the iceberg cost structure (online Appendix D.1; Allen and Arkolakis (2022)).
24 It also allows for spatial correlation in link costs, say, between ​​t​kl​​​ and ​​t​lm​​​. 



252	 AMERICAN ECONOMIC JOURNAL: MACROECONOMICS� OCTOBER 2024

be considered as an overall industry equilibrium within a Sutton (1991) framework, 
where larger markets induce more entrants and lower marginal costs, with profits 
being absorbed by fixed costs.25 Differences between these mechanisms will not 
impact the model estimation but will manifest in the interpretation of scale econo-
mies and for counterfactual predictions.

B. Equilibrium

Route Volume.––Firms from origin ​i​ select the lowest-cost route before consum-
ers in ​j​ select the lowest-cost intermediate good supplier across all the origins coun-
tries. We observe good ​ω​ being shipped on route ​r​ from ​i​ to ​j​ only if the final price 
of ​ω​, which includes both the marginal cost of production and shipping cost on route ​
r​ from ​i​ to ​j​ (​​p​ijnr​​​(ω)​​), is lower than all other prices of good ​ω​ from all other origin 
country-route combinations.

We can define the joint probability that a route ​r​ is the lowest-cost route from ​i​ to ​
j​ for good ​ω​ and that country ​i​ is the lowest-cost supplier of good ​ω​ to ​j​ as

(4) ​​ π​ijnrω​​  ≡  Pr​
(

​p​ijnrω​​  ≤ ​   min​ 
​i ′ ​∈I \i,​ 	r ′ ​∈​R​ij​​\r

​ 
 
 ​  ​p​​i ′ ​jn​r ′ ​ω​​

)
​  = ​ 

​​[​c​in​​ ​κ​ijn​​ · ​​τ ̃ ​​ijr​​]​​​ −θ​
  __________________________   

​∑ ​i ′ ​∈I​ 
 
 ​​​ [​​(​c​​i ′ ​n​​ ​κ​​i ′ ​jn​​)​​​ −θ​ · ​∑ ​r ′ ​∈​R​​i ′ ​j​​​ 

 
 ​​​​ τ ̃ ​​ ​i ′ ​j​r ′ ​​ 

−θ ​]​
 ​.​

By the law of large numbers, this is also the share of goods sold in ​j​ in industry ​n​, 
coming from ​i​, and taking route ​r​. Introducing auxiliary matrix ​​A​n​​  = ​ [​t​ ijn​ 

−θ​​(Ξ, ​ε​ij​​)​]​​,  
where each element is a function of the leg-specific transport cost, we define the 
expected transport cost matrix as

(5)	​​ [​τ​ijn​​]​  ≡ ​​ [​​(I − ​A​n​​​(Ξ, ε)​)​​​ 
−1

​]​​​ 
◦​(−θ)​

​,​

where ◦ is the element-by-element Hadamard power.26 Substituting the definition 
of ​​​τ ̃ ​​ijr​​​ (equation (3)) into equation (4) and summing across routes ​r​ that pass between 
leg ​k​ to ​l​, we can express the share of imports in industry ​n​ in destination ​j​ that come 
from origin ​i​ that passes through leg ​kl​ as

(6)	​​ π​ ijn​ 
kl ​  = ​​ [​c​in​​ ​κ​ijn​​ · ​τ​ikn​​​(Ξ, ε)​ · ​t​kln​​​(Ξ, ε)​ · ​τ​ljn​​​(Ξ, ε)​]​​​ 

−θ
​ ​Φ​ jn​ 

−1​,​

where ​​Φ​jn​​  = ​ ∑ ​i ′ ​​ 
 
 ​​​​ [​c​​i ′ ​n​​ ​κ​​i ′ ​jn​​ · ​τ​​i ′ ​jn​​​(Ξ, ε)​]​​​ 

−θ​​ is the key distinction from Allen and 
Arkolakis (2022)—a multilateral resistance term that accounts for average costs, 
openness, and connectivity of competitors from all other countries ​​i ′ ​​. With optimal 

25 We omit discussion of the optimal shipping network from the perspective of a firm with market power and 
focus on leg-level scale instead. In our time period (2014), we do not find diseconomies of scale using nonlinear 
least squares. See Section V for further discussion.

26 The expected transport cost from ​i​ to destination ​j​ is also ​​τ​ijn​​  =  ​γ​​ −1/θ​ ​​(​∑ r∈​R​ij​​​ 
  ​​ ​​τ ̃ ​​ ijr​ −θ​)​​​ 

−1/θ
​​, where ​γ​ is the func-

tion ​Γ​(t)​  =  ​∫  0​ 
∞​​​x​​ t−1​ ​e​​ −x​ dx​ evaluated at ​​​[​(1 + θ)​ / θ]​​​ 

−θ​​. 
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route selection and competition on price both accounted for, equation (6) is the real-
ized and observable share of traffic that flows through leg ​kl​ from ​i​ to ​j​.

Next, the model yields a gravity equation. The sum of products sold in ​j​ in indus-
try ​n​ from country ​i​ equals the share of products sold in ​j​ in industry ​n​ coming from ​
i​ and taking route ​r​, summed across all ​r​ routes:

(7)	​​ π​ijn​​  ≡ ​ ∑ 
r
​ 

 

 ​​ ​ 
​​[​c​in​​ ​κ​ijn​​ ⋅ ​​τ ̃ ​​ijr​​]​​​ −θ​

  __________________________   
​∑ ​i ′ ​∈I​ 

 
 ​​​ [​​(​c​​i ′ ​n​​ ​κ​​i ′ ​jn​​)​​​ −θ​ ⋅ ​∑ ​r ′ ​∈​R​​i ′ ​j​​​ 

 
 ​​​​ τ ̃ ​​ ​i ′ ​j​r ′ ​​ 

−θ ​]​
 ​  = ​ 

​​[​c​in​​ ​κ​ijn​​ ⋅ ​τ​ij​​​(Ξ, ϵ)​]​​​ 
−θ​
  _________________ 

​Φ​jn​​
 ​ .​

Equations (6) and (7) will jointly generate our estimation equation in Section IV.
Finally, we derive an expression for the share of global shipping passing through ​

kl​:

(8)	​​ π​​ kl​  = ​ ∑ 
n
​ 

 

 ​​​ ∑ 
j
​ 
 

 ​​​ ∑ 
i
​ 
 

 ​​ ​ π​ ijn​ 
kl ​  = ​ ∑ 

n
​ 

 

 ​​​  t​kln​​ ​​(Ξ, ε)​​​ −θ​ · ​∑ 
j
​ 
 

 ​​​ Θ​jn​​ ​τ​ljn​​ ​​(Ξ, ε)​​​ −θ​ · ​ ​Φ​kn​​ _ 
​Φ​jn​​

 ​ ,​

where ​​Θ​jn​​​ is ​j​’s global consumption share of industry ​n​. Because optimal route 
selection and competition on price are both accounted for, equation (8) corresponds 
to the observable shares of all goods passing through leg ​kl​, including shipments 
bound for ​l​ and those continuing onward to other destinations. In Section VI, we 
compare our model-implied leg-level trade flows to those observed in the US micro-
data. We find high correlations that also hold true for higher levels of aggregation 
across origins and levels. In online Appendix C.2, we show how a change in the leg 
cost between ​k​ and ​l​ (​​t​kl​​​(Ξ, ​ε​kl​​)​​) can affect trade volumes between an origin ​i​ and 
destination ​j​ through the trade network.

Closing the Model.––In order to close the model, we require markets to clear for 
factors and goods as well as the balanced trade condition. Unnecessary for estima-
tion, we defer them to Section VII where we conduct counterfactuals.

IV.  Estimation

We now show how to link our model to real world data, use the model to recover 
the trade costs underlying the global trade network, and estimate a scale elasticity 
in shipping.

A. Taking the Model to Data

Using equations (6) and (7), we can calculate the probability of any good trav-
eling through link ​kl​ conditional on being sold from origin ​i​ to destination ​j​. With 
the total value of trade between origin ​i​ and destination ​j​ in industry ​n​ (​​X​ijn​​​), we can 
express the total volume of traffic between ​k​ and ​l​ in a given industry ​n​ (​​Ξ​kln​​​) as

(9)	​​ Ξ​kln​​  ≡ ​ ∑ 
i
​ 
 

 ​​​ ∑ 
j
​ 
 

 ​​ ​ X​ijn​​ · ​​(​τ​ikn​​ ​t​kln​​ ​τ​ljn​​ ​​τ​ijn​​​​ 
− 1​)​​​ 

−θ
​.​
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In our setting, expensive trade routes suffer from Ricardian selection at destination 
markets—the route’s impact on prices make them less competitive relative to other 
routes. Yet, this does not impact the trade cost estimation as seen in equation (9), 
which is identical to Allen and Arkolakis (2022), despite differences in framework. 
While Ricardian selection, nontransportation trade costs such as tariffs, and mul-
tilateral resistance all reduce total trade, they do not differentially favor one route 
from an origin ​i​ to a destination ​j​. Instead, they reduce traffic flows proportionally 
along all links ​kl​.

Mapping our model into the data requires that for a set of industries ​​N 
–
 ​​, trade 

costs are identical and all origin-destination trade ​​(​X​​N 
–
 ​​​  ≡ ​ ∑ n∈​N 

–
 ​​ 

 
 ​​​ X​n​​)​​ and link-level 

traffic ​​(​Ξ​​N 
–
 ​​​  ≡ ​ ∑ n∈​N 

–
 ​​ 

 
 ​​​ Ξ​kln​​)​​ are observable. Summing equation (9) over industries  

​n  ∈ ​ N 
–
 ​​ yields

(10)	​​ Ξ​kl​N 
–
 ​​​  ≡ ​ ∑ 

i
​ 
 

 ​​​ ∑ 
j
​ 
 

 ​​ ​ X​ij​N 
–
 ​​​ · ​​(​τ​ik​N 

–
 ​​​ ​t​kln​​ ​τ​lj​N 

–
 ​​​ ​​τ​ij​N 

–
 ​​​ ​​ 
− 1​)​​​ 

−θ
​.​

Equation (9) tells us that to accurately measure transport costs, we only need data on 
origin-destination trade and link-level traffic for all goods in an industry. Equation 
(10) tells us that we can use traffic across multiple industries so long as we have the 
correct trade aggregate, we see all traffic for those industries, and we can assume 
transport costs are identical in those industries. We implement equation (10) using 
observed total containerized traffic and trade in containerized industries, where 
transportation costs are likely similar, and apply it in estimation only to legs where 
all traffic is observed.

B. Recovering Scale Elasticities

The Cost–Scale Relationship.––The existence of a scale economy in shipping 
implies that perturbations to the global shipping network that affect traffic volumes 
will, in turn, impact the link cost matrix estimated in the next section. Such effects 
must be accounted for in order to correctly estimate counterfactual adjustments.

Using leg-level trade costs from equations (5) and (10), we consider the regression

(11)	​ ln​(​​t ̂ ​​ kl​ 
−θ​ − 1)​  = ​ α​0​​ + ​α​1​​ · ln ​(​Ξ​ kl​ 

data​)​ + ​α​2​​ · ln ​(​d​kl​​)​ + ​ε​kl​​,​

where ​​α​0​​​ is a constant, ​​Ξ​ kl​ 
data​​ is the traffic volume between link ​kl​ that we observe 

in the ports call data, ​​α​1​​​ is the relationship between price and quantity (traffic vol-
umes), and ​​α​2​​ · ln ​(​d​kl​​)​​ is the coefficient and measure of log sea distance from ​k​ to ​
l​ respectively. ​​(​​t ̂ ​​ kl​ 

−θ​ − 1)​​ allows us to interpret ​​α​1​​​ as the elasticity between cost and 
traffic volumes to a trade elasticity ​θ​.27 That is, to interpret results from equation (11) 

27 In our model, ​θ​ serves as both the route dispersion parameter and trade elasticity. As an alternative, we can 
model a nested elasticity and decompose the total trade elasticity into a transportation route elasticity of substitu-
tion and nontransportation component, estimating the former using the observed dispersion of routes in the US 
microdata. 
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as elasticities, they are deflated by ​θ​. The functional form in equation (11) presumes 
scale economies exist at the leg level. In online Appendix Section D.1, we discuss 
alternative specifications.

Of course, this relationship cannot be taken as causal. Lower cost legs may face 
larger demand precisely because unobserved cost-reducers induce higher levels of 
demand on those legs. Essentially, we wish to observe the supply elasticity, but 
we have only market-clearing prices and quantities. We therefore need a demand 
shifter.

Geography-Based Instrument.––We use the intuition of our model to construct 
a geography-based instrument for demand. Demand for a given leg will be higher, 
all else equal, if the leg lies along the most direct route between an origin and a 
destination. For example, consider routes from origin South Korea to destination 
the Netherlands. Routes that include a China-Singapore link are closer to the direct 
Korea-Netherlands route compared to routes that include the China-Australia link. 
As such, more Korea-Netherlands trade should flow through the China-Singapore 
leg than the China-Australia leg, which would involve a longer detour. Links that 
are effectively out of the way for most journeys should, all else equal, face lower 
demand, such as Australia on routes between East Asia and Europe compared to 
Singapore.

Operationalizing this intuition, we relate the direct sea distance between an origin 
and a destination to the distance of two legs as part of a three-leg journey, where the 
omitted middle leg is the object of interest. We calculate the instrument ​​z​kl​​​ as

(12)	​​ z​kl​​  = ​  ∑ 
i\k,l

​ 
 

 ​​ Po​p​i,1960​​​  ∑ 
j\​{k,l}​

​ 
 

 ​​ Po​p​j,1960​​ ​ 
​d​ ij​ 

2 ​
 _ 

​​(​d​ik​​ + ​d​lj​​)​​​ 2​
 ​ ,​

where ​​d​ij​​​ is the sea distance between origin ​i​ and destination ​j​, and the square of the 
relative excess distance between links ​ik​ and ​lj​​​(​d​ik​​ + ​d​lj​​)​​ is weighted by the year 
1960 population at each origin ​i​ and destination ​j​, ​Po​p​i,1960​​​ and ​Po​p​j,1960​​​.

28 Figure 5 Figure 5 
shows the robust first-stage relationship between our instrument and traffic.

For plausible identification, our demand shifter instrument has to be generally 
uncorrelated with unobserved cost determinants for a particular leg controlling for 
its sea distance (corr​​(​ε​kl​​, ln ​z​kl​​)​  =  0​). Locations that are close in sea distance are 
also close in land distance and may have easier access to other modes of transporta-
tion like road or rail. As a robustness check, we recalculate our instrument in equa-
tion (12) in a simplified setting by omitting the shortest 10 percentile distances for 
each origin ​i​ and destination ​j​ respectively and find similar results.

As previously noted, the observed scale economy in our setting can be generated 
by a number of mechanism, including but not limited to internal or external scale 

28 The population in 1960 here stands in place of GDP, which may be endogenous to the trade costs in our 
model. The year is chosen because immigration and populations prior to 1960 could not plausibly be impacted by 
2014 containerized shipping costs. While this squared deviation functional form has an intuitive interpretation, our 
analysis is robust to other functional forms. 
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economies and market power. These mechanisms may generate different out-of-
sample results; further work should be done to isolate and test for these. In order 
to accommodate this multitude of mechanisms simultaneously, we implement a 
model-consistent and agnostic approach in our estimation of scale. Formally, we 
construct moments ​​m​1​​​(α, β)​  =  Zε​(α, ​t ˆ ​)​​ based on equation (11) with vector ​α​ 
and matrix of trade costs ​​t ˆ ​​. First, however, we need to recover leg-level trade 
costs ​​​t ̂ ​​kl​​​.

C. Recovering Trade Costs

We require two observable objects in order to recover a global set of trade costs: 
origin-destination trade values and link-level traffic volumes (equation (10)).29 Our 
traffic data come from our global port of call AIS shipping data.30 We use aggregate 
origin-destination trade data from CEPII and their BACI international database for 
2014, segregating containerized and noncontainerized commodities.31 Note that we 
do not rely on the merged US microdata in our estimation.

29 This procedure is agnostic to the exact specification of any particular trade model that generates trade value 
flows ​X​. We control for all origin, destination, and origin-destination factors by conditioning our estimation on trade 
flows ​X​. In particular, items such as all origin-destination tariffs and nontariff barriers are accounted for. This does 
not mean that we can disentangle the two––rather, we can directly account for these factors collectively.

30 Units for traffic are in TEU. Recall we estimate ship-by-leg TEUs by combining reported ship draught and 
maximum TEU. This process does not rely on the merged US customs data.

31 We use 2014 US customs data on containerized and noncontainerized shipments to construct the share of each 
harmonized system 4-digit commodity code that is transported by container. All commodities with a containerized 
share above 80 percent are labeled as containerized. This procedure shuts down the substitution between container-
ized and noncontainerized transport. In practice we find a bimodal distribution, with some commodities being never 
containerized (e.g., oil and iron ore) and others always containerized (e.g., washing machines and children’s toys). 
This process is documented in online Appendix A.3.

Figure 5. Residualized Plot of Correlation between Instrument and Traffic

Notes: The figure shows a binned scatter plot of 1,946 observations of link ​kl​ with the logarithm of sea distance 
between ​k​ and ​l​ as a control. The x-axis is the logarithm of the instrument ​​z​kl​​​. The y-axis is the natural log of traffic 
on leg ​kl​. Standard errors are clustered two ways by nodes ​k​ and ​l​.
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In an ideal world, estimation would recover the trade costs that directly rational-
ize observed bilateral containerized traffic flows—a just-identified case. While we 
directly observe ocean containerized traffic, our data omit movement of containers 
overland, across, and within borders. We overcome this limitation by assuming a 
functional form that allows for estimation without requiring the direct observation 
of overland links. We consider the mapping32

	​​​ t ̂ ​​ ij​ 
−θ​  = ​   1 ___________  

1 + exp​(Yβ)​
 ​  ∈ ​ [0, 1]​,​

where the matrix ​Y​ is a vector defined as

	​ Yβ  = ​ β​0​​ + ​β​1​​ log ​(​SeaDistance​ij​​)​ + ​β​2​​ log ​(​traffic​ij​​)​ + ​β​3​​ log ​(​traffic​i​​)​

              + ​β​4​​ log ​(​traffic​j​​)​ + ​β​5​​ log ​(​trade​ij​​)​ + ​β​6​​ 1​{i, j  ∈  LandBorders}​,​

where ​​β​0​​​ is an intercept, ​​β​1​​​ considers the sea distance between the nearest principal 
ports,33 and ​​β​2​​​ considers port-to-port traffic. ​​β​3​​​ and ​​β​4​​​ consider the total incoming 
and outgoing traffic at ports ​i​ and ​j​, respectively. ​​β​5​​​ considers trade flows from ports 
in ​i​ to ​j​. Finally, ​​β​6​​​ is an indicator for a shared land border.34

It is crucial to note two things. First, while the equations above posit relation-
ships between observables, our objective at this stage is not the vector ​β​ of coef-
ficients—which may reflect endogenous variables—but the resulting predictions 
for ​​​t ̂ ​​ij​​​. Instead, we seek to fully saturate the variation in the data in order to gen-
erate the closest empirical prediction for the matrix of trade costs relative to the 
just-identified case, which yields the model-perfect estimates of trade costs for each 
link. This allows us to recover the trade costs while remaining agnostic to their 
underlying determinants, including potential economies of scale as well as possi-
ble geographic indicators. Secondly, while the parameters for ​β​ yield estimates of 
every trade cost ​​​t ̂ ​​ij​​​, we need not discipline ​β​ by comparing traffic on every link. This 
allows us to still recover estimates of ​​​t ̂ ​​ij​​​ although we do not observe within-country 
traffic and between-countries traffic that share overland routes.

We create a moment ​​m​2​​​ that finds the vector ​β​ that minimizes the difference 
between the matrix of expected traffic, ​​Ξ ˆ ​​(β | X, Y, θ)​​, and observed traffic, ​​Ξ​​ data​​, for 
countries that do not share a land border:

	​​ m​2​​​(β)​  = ​ (​Ξ ˆ ​​(β | 𝐗, 𝐘, θ)​)​ − ​(​Ξ​​ data​)​​,

where expected traffic is a function of ​β​, trade elasticity ​θ​, and observed trade values 
X.

As noted, we do not fully observe the traffic flows of containerized goods on 
geographically contiguous legs, and we do not perform our estimation procedure 

32 This functional form maps from the real numbers to the unit interval, as is required by our theory.
33 For each country pair, we calculate the volume-weighted mean sea distance across all port pairs. 
34 We do not estimate within-country trade costs directly due to data constraints and assume that they do not 

change in the counterfactual.
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using traffic data from these legs. Instead, our trade cost estimates, even for overland 
links, are disciplined by the observed traffic flows of sea-only legs that do not share 
a land border.

D. Joint Estimation

We combine our scale estimation and recovery of trade costs into a single stage:

	​​ m​1​​​(α, β)​  =  Zε​(α, ​t ˆ ​​(β)​)​​

             ​​             m​2​​​(β)​  = ​ (​Ξ ˆ ​​(β | X, Y, θ)​)​ − ​(​Ξ​​ data​)​​.

We conduct a two-stage generalized method of moments (GMM) procedure, using 
optimal instrumental variable weights estimation for the first set of moments ​​m​1​​​, 
which accounts for our causal estimates of scale, and trade volumes on the second 
set of moments ​​m​2​​​, which rationalizes a global set of link-level trade costs ​​t​kl​​​ con-
ditional on observable origin-destination trade values ​X​ and link-level traffic flows ​​
Ξ​​ data​​. We reiterate that inference can only be conducted on ​α​. ​β​ contains incidental 
parameters––important for estimation, but not inference.35

E. Simultaneous Identification of Scale and Trade Costs

Our approach parallels the industrial organization literature, which seeks to 
recover unobserved cost structures, and identification depends both on instrumen-
tal variables and behavioral assumption. For example, Ackerberg et  al. (2007) 
take market level data and instruments to recover demand and then use equilib-
rium assumptions on behavior to recover marginal costs, which are then projected 
on product attributes. Similarly, we rely jointly on the structure of equilibrium 
shipping flows embedded in the Allen and Arkolakis (2022) framework and our 
demand-shifting instrument.

However, this approach opens the door for a mechanically driven result. 
Specifically, we are concerned with estimating the causal scale impact of traffic vol-
umes on trade cost (equation (11)) while, at the same time, our cost estimates are 
themselves recovered from our model prediction, which is a function of traffic vol-
umes (equation (10)). This circularity can introduce a mechanical correlation if, for 
example, measurement error in traffic feeds both into trade cost estimates and traffic.

We approach this problem through multiple methods. First, we establish how this 
issue can arise due to measurement error in our context. We show how this error can 
be considered a form of omitted variable bias and the conditions under which an 
instrumental variable can correct for this bias. Second, we run Monte Carlo simu-
lations that confirm the existence of this bias in the presence of measurement error 
and show how our instrument eliminates it. Third, we use external data on freight 
costs to estimate potential traffic-correlated errors, both to illustrate the potential 

35 The second stage computes an optimal weighting matrix using the first stage results.
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bias in the OLS and show how our instrument removes this bias. Finally, we run a 
parallel scale estimation purely on our external freight costs and find similar results. 
See online Appendix D.2.

Figure  6 summarizes our findings using Monte Carlo simulations. First, we 
show that with true trade costs, typical measurement error in traffic volumes 
would bias OLS estimates downward (purple dot-dash line). If measurement error 
in traffic affects the trade cost estimates, the OLS estimates would bias upward 
(red dash line), since the dependent variable (trade costs) is partially derived from 
the independent variable (traffic). However, a valid instrumental variable can cor-
rect for this bias (blue solid line). Online Appendix D.2 further elaborates on the 
simulation procedure.

We show the lack of correlation between our instrument and an approximation 
of the error, estimated as the difference between our measured costs and external 
measures of Drewry maritime research freight costs from Wong (2022). Details for 
this exercise are found in online Appendix D.2. Panels A and B of Figure 7 show a 
positive and negative correlation between this approximation of the error and esti-
mates link costs and link traffic, respectively, controlling for distance, consistent 
with the circularity bias in online Appendix D.2 and the Monte Carlo. Panel C shows 
a weak and insignificant correlation between this residualized approximation of the 
error and our instrument, again controlling for sea distance. The lack of correlation 
is consistent with an instrument that is uncorrelated with the true error. While this is 
insufficient to validate our instrument, it performs the same role as a balancing test, 
showing an absence of evidence of exclusion restriction violations.

Figure 6. Monte Carlo Simulations Illustrating Estimation Biases

Notes: The figure shows 500 simulated estimates. The blue solid line is our preferred instrumental variable esti-
mator. Our instrument is correlated with the true shipping traffic on a particular route. The purple dot-dash line 
illustrates classic measurement error in the independent variable (shipping traffic on a route), leading to classic 
attenuation bias in ordinary least squares (OLS). The red dash line illustrates our principle worry––an upward bias 
in OLS, due to our recovered trade costs being a function of observed shipping traffic that could be measured with 
error. A valid IV can correct for this bias (blue solid line). See online Appendix D.2 for full details.
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V.  Results

Scale Economy.––Table 1 reports our instrumented scale elasticity from our scale 
moments (equation (11)). For the widely used trade elasticity value of ​θ  =  4.4​
(Simonovska and  Waugh 2014), the interpretation of our causal estimate is that 
increasing traffic volume on a link by 1 percent would reduce costs by 0.06 per-
cent. As the typical journey observed in our microdata has 2.5 links, this translates 
into a 0.17 percent decrease in overall origin-destination trade costs. Our estimate 
is within one standard error of Hummels and Skiba (2004), who estimate an elas-
ticity of freight to quantity of 0.18 using an IV and trade data from six import-
ers, and Asturias (2020), who reports an elasticity of 0.23 using US port data.36 
Additionally, Skiba (2017) reports an elasticity of 0.26 using product-level import 

36 The six importers in Hummels and Skiba (2004) are Argentina, Brazil, Chile, Paraguay, Uruguay, and the 
United States. We compare our estimates to theirs for all countries since our scale estimate is based on global data.

Figure 7. Balancing Test

Notes: Figures are scatter plots of, on the x-axis, the natural log of the estimated leg costs in Section IV, the observed 
traffic, and the geography-based instrument used in Section IV (panels A, B, and C, respectively) against, on the 
y-axis, the difference between the natural logs of the estimated leg costs in Section IV and from Wong (2022), resid-
ualized after controlling for sea distance for 209 legs for which both costs exist. Standard errors are clustered two 
ways by the nodes on each link. See online Appendix D.2 for full details.
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data from Latin America. Our estimate is also broadly consistent with the literature 
on scale in production. Bartelme et al. (2019) estimates a sector-level scale elasticity 
of 0.21, while Lashkaripour and Lugovskyy (2023) finds an elasticity of 0.20 after 
jointly estimating both scale and trade elasticities.

Link and Average Bilateral Trade Costs.––Online Appendix Figure A.11 graphs 
our resulting matrix of pairwise trade costs. We present the vector ​β​ estimates in 
online Appendix Table A.5 as purely predictive parameters, not fundamentals that 
we can alter in the counterfactuals (see online Appendix D.1 for further details). 
Instead, we simply need to know if our ​β​ estimates can predict containerized traffic 
that reflects the actual observed traffic volumes. With a full link-level trade cost 
matrix ​​[​t​kl​​]​​, we also can generate an average bilateral transport cost between loca-
tions ​​[​τ​ij​​]​​. We provide our network-consistent trade-link and origin-destination 
cost estimates to researchers, and they are available for download on our websites. 
Online Appendix Table A.11 compares these network-consistent bilateral trade costs 
to more commonly used distance measures. Our cost measures have more predic-
tive power than distance alone and both are significant in a combined specification, 
implying that both measures have distinct predictive power for trade.

Robustness and Alternative Specifications.––First, to mitigate the risk of model 
misspecification (in equation (11))—for example, port-level economies or disecon-
omies of scale––we explore alternative specifications. Adding origin or destination 
fixed effects increases the magnitude of leg-level scale economy. We choose our 
current specification that yields a more conservative scale measure. We also search 
for, but do not find, nonlinearities in our estimated scale economy indicative of 
port congestion or scale economies that would result in altered counterfactual costs. 
Additionally, as an alternative estimation approach for equation (11), we use exter-
nal cost measures—freight rates from 140 bilateral pairs from Wong (2022)—and 
find similar, larger, and noisier point estimates (online Appendix Section D.2.4). 
These pecuniary freight rates are available for just a subset of routes compared to 

Table 1—GMM Estimation Results

​ln​(​c​kl​​)​​
(1)

​ln​(​Ξ​ kl​ 
data​)​​ −0.28

(0.02)
​ln​(​d​kl​​)​​ 0.59

(0.03)
Constant 4.06

(0.35)

Notes: We conduct a two-stage GMM procedure, first using optimal 
instrumental variable weights estimation on the first set of moments and 
the inverse of trade volumes on the second set of moments. The second 
stage computes an optimal weighting matrix W using the first-stage results.  
​ln​(​c​kl​​)​​ is the natural log of transportation trade cost on link ​kl​. ​ln ​(​Ξ​ kl​ 

data​)​​ is 
the natural log of traffic volume on link ​kl​. ​ln​(​d​kl​​)​​ is the natural log of sea 
distance between ​k​ and ​l​, computed using Dijkstra’s algorithm.
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our setting and do not include all possible elements of link trade costs that are con-
sistent with our model.

Finally, locations that are strategically close to each other in sea distance are 
close in land distance and potentially have easier access to alternative modes of 
transportation like road or rail. We recalculate our instrument omitting the shortest 
10  percentile distances for each origin-destination pair and find that our results 
retain the same signs and stay within a standard error of our baseline estimates.

Model Fit.––Figure  8 compares our model-predicted traffic and trade values 
against their observed counterparts in the data. In panel A, we compare actual 
observed global container traffic shares with the our model-predicted shares using 
our estimated trade costs. We include both a best fit line and a 45-degree line. We 
fit the data extremely well, with a correlation between the observed and predicted 
shares (in logs) of 0.9. Panel B compares our estimated trade shares to actual 
observed trade shares, which we do not target.37 We fit the data well here as well 
with a correlation (in logs) of 0.7.

VI.  Comparison of Model-Predicted Estimates to Data

We compare our model’s results with three separate sets of external data. First, 
we link our results to ship size estimates to highlight one possible scale-economy 
mechanism. Second, we compare our trade cost estimates with freight rates. Third, 
we compare our model-predicted traffic flows for US-bound shipments to our US 
microdata.

37 To generate trade flows, we close the model using the full setup in Section VII.

Figure 8. Model Fit Comparisons

Notes: Panel A compares our targeted moment: predicted container traffic volumes from any two ports (y-axis) to 
the actual container traffic volumes (x-axis, normalized as a share to total world container traffic). Panel B compares 
untargeted aggregate trade shares (x-axis) versus predicted trade shares for containerized traffic (y-axis), where pre-
dicted trade shares are computed using the full model described in Section VII.
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A. Symptoms of Scale Economies: Ship Size

Using our model, we estimate leg-level shipping scale economies. A number 
of mechanisms can generate the cost reductions that coincide with these scale 
economies. Internal or external scale economies in shipping and competition 
among shippers could all generate a negative relationship between volume and 
costs, as could factors such as port infrastructure.38 Lacking data to directly test 
these mechanisms, we turn to one symptom of a scale economy observable in our 
US microdata that lends further credibility to our results: ship size. Relying on the 
idea that larger ships enable lower shipping costs (Cullinane and Khanna 2000), 
we consider the correlations between ship sizes, trade volumes, and our recovered 
leg-level trade costs and then investigate the relationship between indirect ship-
ping and ship size.

Ship Sizes, Traffic Volumes, and Recovered Trade Costs.––In panel A of Figure 9, 
we show the positive relationship between the average containership size on a route 
and the traffic volume on that route, controlling for the distance between origin and 
destination. In panel B, using the route-level containership size measure, we show 
the positive link between ship size and our corresponding recovered trade costs. 
Routes with more container traffic use larger ships: a 10 percent increase in route 
volumes correspond to a 2 percent increase in ship size (column 1, Table A.8 in 
the online Appendix). Routes with lower trade costs use larger ships: a 10 percent 
decrease in our estimated iceberg trade costs corresponds to 6 percent increase in 
ship sizes (column 1, Table A.9 in the online Appendix).39

Ship Size and Indirect Trade.––Figure  10 further investigates the relationship 
between entrepôt usage and ship size, plotting ship size (x-axis) against US-bound 
traffic volume (y-axis) by country of origin––separately for traffic that is routed 
through an entrepôt and traffic that is not––such that each origin country is asso-
ciated with two data points. Larger origins transport goods to the United States on 
larger ships. However, shipments from smaller origins routed through entrepôts also 
arrive on large ships, such that indirect shipping through entrepôts appears to close 
the ship-size gap for smaller origins.40

B. Cost Estimates with Freight Rates Data

Next, we compare our expected trade cost estimates ​​τ​ij​​​ at the origin-destination 
level with container freight rates from Wong (2022). These rates are the costs paid 

38 High-traffic routes are served by many carriers, using ships capable of carrying 25,000 containers with auto-
mated loading and unloading.

39 Online Appendix D.3 reports shipment-level regressions controlling for origins, destinations, and without 
route distance controls. Results are similar.

40 For shipments with the same origin, US destination, and controlling for the total number of stops, shipments 
stopping at entrepôts arrive on ships that are on average 15 percent larger. For shipments with the same origin and 
US destination, shipments sent directly arrive on ships that are, on average, 8 percent smaller. Further shipment 
level analysis in online Appendix D.4 confirms the positive relationships between shipment volume and ship size 
and robustness to different notions of origin, lading, and transshipment.



264	 AMERICAN ECONOMIC JOURNAL: MACROECONOMICS� OCTOBER 2024

by firms to transport a standard full container load between port pairs and include 
the base ocean rate, fuel surcharge, and terminal handling charges at both origin and 
destination. They are for the largest ports globally that handle more than 1 million 

Figure 10. Link between Indirect Trade and Ship Size

Notes: The x-axis shows the total export volume in TEUs from an origin country to the United States. The y-axis 
shows the average ship size that arrives from an origin country to the United States. Each country is represented by 
two data points: a blue and a red circle. The red circle indicates the corresponding information for trade from an ori-
gin that is routed through an entrepôt while the blue circle is for trade that is not. Circle size denotes shipping vol-
ume specific to the route (either through an entrepôt or not). Note that trade that is not routed through an entrepôt 
(blue circle) could either be shipped directly to the United States or shipped via a nonentrepôt.
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containers annually and account for about 73 percent of global container volumes 
during this time period (World Bank 2018). While we are only comparing a subset 
of the cost estimates from our entire sample with these freight rates, we find a cor-
relation of 0.7 (Figure 11).

C. Traffic Estimates with US Microdata

In order to assess our model’s ability to capture actual shipment journeys and 
trade indirectness, we compare our model predictions for the paths of US-bound 
shipment traffic to the actual observed paths in our US microdata. Our estimation, 
which uses global traffic data rather than the US microdata, delivers predictions for 
how US-bound shipments travel through the shipping network. Equations (6) and 
(7) imply

(13)	​​​ π ˆ ​​ iUS​ 
kl ​   = ​​ [​τ​ik​​ ​t​kl​​ ​τ​lj​​ ​τ​ ij​ 

−1​]​​​ 
−θ

​​,

as the ratio of all shipments from ​i​ to the United States that are observed flowing 
through leg ​k, l​.

We compare our model-predicted value of equation (13) to the proportion 
of goods coming into the United States from any origin ​i​ on leg ​kl​, which we  
call ​​π​ iUS,Data​ 

kl  ​​, by aggregating shipments using link ​kl​ in our microdata. Note that 
while our microdata is described in Section I and used to generate our stylized facts 
in Section  II, it is not used to estimate our trade costs in Section  IV. Column 1 
of Table 2 reports the univariate regression outcome between these two measures, 
weighted by total origin TEU. We find a significantly positive relationship with a 
coefficient of 1 in the confidence interval. Over half of the variation in the observed 
distribution can be explained using the predicted probabilities.

Figure 11. Correlation between Cost Estimates with Actual Freight Rates

Notes: Data points compare origin-destination predicted costs ​​τ​ij​​​ to average freight rates from Wong (2022) and 
Dewry Maritime Research (2014). Circle size are weights for container volumes (TEU).
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Next, summing the predicted probabilities in equation (13) across all origins ​i​, 
the model delivers a prediction for the total amount of US-bound traffic on a given 
leg ​kl​:

	​​​ Ξ ˆ ​​​ 
kl

​  = ​ ∑ 
i
​ 
 

 ​​​  X​iUS​​ · ​​π ˆ ​​ iUS​ 
kl ​ ​,

where ​​X​iUS​​​ is the total trade flow from origin ​i​ to the United States. Column 2 
compares this to the total volume of shipments moving between a given leg in the 
microdata (​​Ξ​ Data​ 

kl  ​​), again finding a positive and significant coefficient with 1 in the 
confidence interval.

Finally, summing probabilities in equation (13) across origins ​i​ and nodes ​k​, we 
obtain the total traffic through node ​l​. Subtracting volume of exports from ​l​, we 
obtain the entrepôt usage of ​l​ for US-bound shipments:

	​​​ π ˆ ​​ US​ 
l ​  − ​​π ˆ ​​l,US​​  ∝ ​ ∑ 

k
​ 

 

 ​​​ ​ Ξ ˆ ​​​ 
kl

​ − ​X​l,US​​  = ​ ∑ 
k
​ 

 

 ​​​ ∑ 
i
​ 
 

 ​​​  X​iUS​​ · ​​π ˆ ​​ iUS​ 
kl ​  − ​X​l,US​​​,

Column 3 compares this to its counterpart in the microdata (​​π​ US,Data​ 
l  ​ − ​π​l,US,Data​​​), 

finding a positive and significant result with 1 within the confidence interval.
In the microdata, a number of legs have zero traffic volumes. However, our 

model predicts some small amount of traffic on every leg. In columns 4 through 
6, we rerun the regressions for each corresponding predicted traffic estimate 
including legs with zero observed volumes (increasing our observation count). 
Our results do not significantly change because our model predicts extremely low 
volumes on these legs.

Table 2—Correlation between Traffic Estimates with Microdata

​​​π ˆ ​​ iUS​ 
kl ​ ​ ​​​Ξ ˆ ​​​ 

kl
​​ ​​​π ˆ ​​ US​ 

l ​  − ​​π ˆ ​​l,US​​​ ​​​π ˆ ​​ iUS​ 
kl ​ ​ ​​​Ξ ˆ ​​​ 

kl
​​ ​​​π ˆ ​​ US​ 

l ​  − ​​π ˆ ​​l,US​​​
(1) (2) (3) (4) (5) (6)

​​π​ iUS,Data​ 
kl  ​​ 0.844 0.870

(0.117) (0.119)
​​Ξ​ Data​ 

kl  ​​ 1.217 1.233
(0.123) (0.121)

​​π​ US,Data​ 
l  ​ − ​π​l,US,Data​​​ 0.942 0.963

(0.224) (0.220)

Observations 13,763 650 95 365,330 2,149 186
Data All All All
​​R​​ 2​​ 0.518 0.666 0.420 0.517 0.675 0.425
F 51.88 97.98 17.64 53.15 103.9 19.15

Notes: ​​​π ˆ ​​ iUS​ 
kl ​ ​ is the model-predicted share of goods from origin ​i​ to US destination flowing through leg ​k, l​, ​​​Ξ ˆ ​​kl​​​ is 

the model-predicted total US-bound traffic on a given leg ​k, l​, and ​​​π ˆ ​​ US​ 
l ​  − ​​π ˆ ​​l,US​​​ is the model-predicted total excess 

US-bound traffic through node ​l​. Their corresponding variables observed in the compiled microdata are indicated 
with subscript ​Data​: ​​π​ iUS,Data​ 

kl  ​​, ​​Ξ​kl,Data​​​, and ​​π​ US,Data​ 
l  ​ − ​π​l,US,Data​​​. Columns 1 to 3 are restricted to nonzero traffic vol-

umes in the US microdata, while columns 4 to 6 include journeys with zero traffic volumes in the US microdata (all 
data). Columns 1 and 4 results are robust to tobit specifications, which allow for lower and upper censoring limits. 
Standard errors clustered by origin and destination countries.
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Our paper provides a new set of global trade costs that accounts for the trade net-
work. The tight matches between our estimates—trade costs and traffic—and separate 
sets of observed data external to our estimation demonstrate that our estimates reflect 
actual costs and indirect traffic flows in the trade network. Additionally, these results 
serve as a check to the validity of our modeling approach and the Allen and Arkolakis 
(2022) framework. Allen and Arkolakis (2022) impute traffic and trade flows within 
the US highway system for their estimation.41 Despite the strong structural assump-
tions made and the limited data requirements, our checks curtail the risk that our 
estimates are wildly off the mark. In addition to our leg and origin-destination cost 
estimates, we provide model-implied indirectness measures for ocean shipping as 
well as resulting market access measures to researchers on our websites.

VII.  Counterfactuals

We quantify the welfare importance of the trade network and the specific role 
entrepôts play within that network in three counterfactual exercises. In our first 
counterfactual, we demonstrate that (i) transportation improvements at entrepôts 
have significant global welfare impacts (not including their own gains), as well as 
localized benefits for nearby neighboring countries as a result of the trade network; 
(ii) the global impact of transportation improvements differs meaningfully from 
nontransportation improvements for all countries—not just, but especially for espe-
cially entrepôts—due to the network structure of trade; and (iii) scale economies in 
transportation further magnifies these impacts.

In our second counterfactual, we illustrate how nontransportation cost changes 
at an entrepôt generate widespread impacts through the trade network—beyond 
directly impacted countries—by considering the impact of a negative trade shock on 
an entrepôt node country in the form of the United Kingdom leaving the European 
Union. Changes to the trade network due to scale economies generate different con-
sequences for Brexit, both in effects’ magnitudes and their distributions.

Our third counterfactual evaluates the welfare and trade impacts of the two 
endogenous mechanisms in our model: (i) network effects—allowing countries to 
ship indirectly––and (ii) scale effects—allowing countries to ship indirectly and 
take advantage of scale economies. To illustrate this, we study the effects of the 
Arctic opening up to trade between the Pacific and Atlantic Oceans, bypassing the 
Suez and Panama canals.

A. Counterfactual Methodology

To estimate these counterfactuals, we first introduce structural assumptions into 
our general framework as well as factor and goods market clearing and balanced 
trade conditions in order to deliver a quantifiable general equilibrium model.

41 They assume that the observed traffic for a link is proportional to the underlying value of trade on that link. 
This assumption is later on verified by comparing their predicted trade flows to actual flows from the commodity 
flow survey.
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Closing the Model.––We adopt the Caliendo and Parro (2015) framework and 
assume there are three sectors (​N  =  3​): containerized tradables ​c​, noncontainerized 
tradables ​nc​, and nontradables ​nt​ (​n  ∈ ​ [c, nc, nt]​​), all three of which are used as 
final goods and intermediates in roundabout production. See online Appendix E for 
full details.

Equilibrium in Changes.––Defining the general equilibrium using hat algebra, 
we consider two sets of changes: (i) link-level transport costs ​​​t ̇ ​​kl​​  = ​​ t ′ ​​kl​​​​/​t​kl​​​, which 
change expected trade costs ​​​τ ˙ ​​ijn​​  = ​​ τ ′ ​​ijn​​/​τ​ijn​​​, and (ii) changes in nontransportation 
trade costs ​​​κ ˙ ​​kl​​  = ​​ κ ′ ​​kl​​/​κ​kl​​​. Both alter the endogenous costs of production, price 
indices, wage levels, trade flows, and welfare. We solve for how wages and prices 
change ​​{​​w ˙ ​​i​​, ​​P ˙ ​​i​​}​​ as a function of changes to model primitives, ​​{​​τ ˙ ​​ijn​​, ​​z ̇ ​​in​​, ​​κ ˙ ​​ijn​​}​​, and 
compute changes in marginal costs ​​​c ˙ ​​in​​​ and trade volumes ​​​X ˙ ​​ij​​​.

Additional Data.––We combine our trade volume data with country-level 
input-output data from the Eora Global Supply Chain database, aggregating to three 
sectors: nontraded, containerized traded, and noncontainerized traded goods. We use 
country-level consumption and production data to compute Cobb-Douglas shares ​η​ 
and ​γ​. This gives us a sample size of 136 countries. We conservatively set ​θ  =  4​ 
(Simonovska and Waugh 2014).42

Procedure.––Changes to transport costs are implemented as changes to link costs  
​​​t ̇ ​​kl​​​, which, translated through the model, generate changes in the expected trade cost 
between every bilateral trading pair in our data—even those that are not directly 
connected with each other. Once calculated, these bilateral changes enter isometri-
cally to changes in bilateral nontransportation costs. For analysis that includes the 
impact of scale, we model a new equilibrium in the short-to-medium run by follow-
ing an iterated procedure in algorithm 1 in online Appendix F.1. In this procedure, 
we start at today’s equilibrium and allow all shippers to optimize their transportation 
patterns. We then recalculate trade costs at new volumes according to equation (11). 
We iterate, allowing reoptimization until a new stable equilibrium is reached. Our 
model theoretically admits multiple equillibria (as in Brancaccio, Kalouptsidi, and 
Papageorgiou 2020); however, we focus on the unique equilibrium from our current 
starting point—the world today.43

B. Importance of Entrepôts in the Trade Network

Overview.––We consider the role of the shipping network in international trade 
and the specific importance of entrepôts in that network. We run two types of 

42 An alternative approach decomposes the total trade elasticity into a transportation route elasticity of substi-
tution and nontransportation component, estimating the former using the observed dispersion of routes in the US 
microdata.

43 Kucheryavyy, Lyn, and Rodríguez-Clare (2019) establishes a common mathematical structure that charac-
terizes the unique equilibrium in multi-industry gravity trade models with industry-level external economies of 
scale. Their structure requires that the product of the trade and scale elasticities to be not higher than one, which is 
satisfied in our case.



VOL. 16 NO. 4� 269GANAPATI ET AL.: ENTREPÔT: HUBS, SCALE, AND TRADE COSTS

counterfactuals. For all countries, we consider the impact of transportation infra-
structure investment in the form of a 1 percent reduction in transportation costs  
(​​t​kl​​​) to and from a targeted country. We contrast this with a 1 percent reduction in 
nontransportation trade costs (​​κ​ij​​​) to and from the targeted country, such as a unilat-
eral tariff reduction or reduction in information frictions. For each type of counter-
factual, we evaluate two cases—equilibrium changes with and without accounting 
for the endogenous impact of scale economies on transport costs throughout the 
shipping network. Reductions in ​​κ​ij​​​ without scale effects consider changes in a man-
ner that ignores the shipping network, while the other three cases involve exoge-
nous and/or endogenous changes to the shipping network. In each of these four 
cases, we consider welfare and bilateral trade changes to the targeted country as well 
as to all other impacted countries, and focus specifically on differences between 
entrepôts and nonentrepôts. With 136 targeted countries and four cases, we have 
544 counterfactuals.

Which Countries Are Pivotal to the Trade Network.––Our general equilibrium 
model yields a convenient metric for how pivotal a country or node is within the 
trade network: the impact of changes at the country on global welfare excluding 
a country’s own. Pivotal locations are those that generate the largest adjustments 
throughout the network. Panel A in Figure  12 lists the global welfare impact of 
infrastructure improvements at the 20 most pivotal nodes in the network excluding 
countries’ own welfare change, for cases both with and without scale responses. 
Our 15 entrepôts dominate this list. Singapore and Egypt are top two, evocative of 
the strain in global supply chains when the Suez Canal was blocked in March 2021 
(Paris and Malsin 2021; Sheppard, Dempsey, and Saleh 2021; Gambrell and Magdy 
2021).44 Scale economies’ impact on the transportation network (overlaid gray 
bars) further augment the differential impact of entrepôts.45 Infrastructure invest-
ments at entrepôts generate, on average, 10 times the global welfare impact relative 
to investment elsewhere (columns 3 and 4, Appendix Table A.13).46

When Does Accounting for the Trade Network Matter.––Panel B of Figure 12 plots 
the average welfare impact, excluding the targeted country’s own welfare change, of 
a transportation cost reduction (as in panel A) against the same for nontransportation 
trade costs. While driven by gravity, there is a strong overall relationship between 
the two counterfactuals, the average difference is roughly an order of magnitude: the 
effects of one type of counterfactuals will be a poor predictor of the other for any 
given country. For entrepôts, (red in panel B), the one-to-one relationship is vio-
lated. For example, Egypt ranks top two in terms of global impact from infrastruc-
ture improvements, while it is not among the top 20 in terms of nontransportation 
trade cost reductions. While the effect of nontransportation cost reductions in Egypt 
has a similar global welfare effect to that of Colombia, Egypt’s impact is larger than 

44 Within drybulk shipping, Brancaccio, Kalouptsidi, and Papageorgiou (2020) finds that removing the Suez 
Canal has a higher welfare impact than the Panama Canal and Strait of Gibraltar.

45 Panel A of online Appendix Figure A.14 repeats the exercise for cases with nontransportation cost reductions, 
finding that the top 20 list is dominated by the largest economies instead.

46 Online Appendix Tables A.13 and A.14 examine the differential impact of targeting entrepôts.
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that of the United States in the transportation cost reduction exercise.47 The pivotal 
nature of the entrepôts are specific to their role in the trade network.

Ignoring the trade network impacts of policy rolls the quantitatively large net-
work impacts into the effects of nontransportation cost changes. On the one hand, 
the impact from any one individual trade cost change will be highly nonpredictive. 
On the other hand, this may not qualitatively impact analysis at the spokes of the 

47 Panel B online Appendix Figure A.14 finds similar results comparing nontransportation cost reductions with 
and without an endogenous scale response. Country-pair bilateral trade results are similar.

Figure 12. Most Pivotal Countries in the Network: Change in Global Welfare

Notes: Panel A shows aggregate net change in global welfare after infrastructure investment in the targeted coun-
try, excluding the country’s own welfare change, for the countries with the largest global impact calculated without 
scale economies. Panel B compares, by country, the change in world welfare, excluding the country’s own welfare, 
from a 1 percent decrease in nontransportation costs (x-axis) versus a 1 percent decrease in transportation costs 
(y-axis). Entrepôts are labelled in red.
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network—those origins or destinations that do not significantly participate in trade 
as third countries—but substantially obfuscates the role of entrepôts in trade.

The Impact of Entrepôts Are Localized.––To account for the differential impacts of 
entrepôts, we drill down to one particular margin at which the impact appears most 
distinct: locally. Figure 13 is a binned scatter plot considering the welfare effects 
on the impacted country (y-axis) relative to its distance from the targeted country 
(x-axis), adjusting for the impacted country fixed effects. Nearly overlapping blue 
and green dots in Figure 13 panel B show a nearly identical distance gradient for 
nonentrepôts and entrepôts respectively for counterfactual nontransportation cost 
reductions without scale economies. The blue and green dots in Figure 13 panel A 
show the overall larger impact of infrastructure investments at entrepôts is relatively 
more localized—decaying at five times the rate. Scale economies amplify the local-
ization, with orange dots decaying at seven times the rate compared to red.48

Scale Economies Concentrate Gains to Entrepôts.––Finally, we turn our attention 
to how these cost reductions differentially affect the impacted countries when they 
are entrepôts versus nonentrepôts. Figure 14 plots the differential welfare gains to 
entrepôts relative to nonentrepôts, as impacted countries, controlling for impacted 
country size, distance between targeted and impacted countries, and targeted coun-
try fixed effects. Without scale economies, we find that the welfare gains for both 
entrepôts and nonentrepôts are not significantly different (in blue). However, the 
differential benefits to entrepôts is significant and large when allowing for scale 

48 The orange dots in panel B, which include the endogenous scale response through the transportation network, 
echo these results.

Figure 13. Spatial Decay of Benefits by Entrepôt Status

Notes: Panel A is a binned scatter of welfare effects of transportation infrastructure on impacted countries versus 
distance between targeted and impacted countries. Targeted countries receive the cost reduction and impacted coun-
tries trade with them. Blue and red dots are the no-scale and scale cases for counterfactuals where targeted countries 
are not entrepôts, respectively. Green and orange dots are no-scale and scale cases, respectively, for counterfactuals 
where targeted countries are entrepôts. Panel B presents the same for reductions in nontransportation trade costs.
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economies (in red). Scale economies disproportionately accrue gains to entrepôts 
as impacted countries. The coefficient on the entrepôt dummy is 0.15 (SE of 0.06) 
and 0.13 (SE of 0.05) for transportation and nontransportation counterfactuals, 
respectively. The pairwise difference between the two cases (in green) is statistically 
significant. These results that scale economies in transportation concentrate gains 
locally at and around hubs highlight scale economies in transportation as a source 
of agglomeration.

C. Impact of Nontransport Trade Costs on the Network

In order to illustrate the trade network consequences of nontransportation trade 
cost changes on a node, we study the effects of Brexit—a 5 percent increase in 
nontransportation trade costs for goods that originate or are destined for the United 
States. We assume these increases will not be charged to goods that temporarily stop 
or are transshipped at British ports.

We model two cases: first without, then with the impact of scale on the trade net-
work. In our first case, as in a traditional model, outcomes are only affected through 
changes in trade with the United Kingdom or multilateral resistance. However, with 
scale economies, the decrease in UK trade will raise trade costs of neighboring 
countries through the trade network. Lower trade volumes lead to increased trans-
port costs, not only for the United Kingdom, but also countries that use the United 
Kingdom as an entrepôt. Irish exports to the United States will now be more costly, 
as they will either pay the increased costs of travelling through Britain, use an alter-
native entrepôt, or take a low-volume, more costly direct trip. Panel A of Table 3 
reports aggregate effects. The direct effect decreases global welfare by 2.3 basis 

Figure 14. Differential Welfare Gains of Impacted Countries by Entrepôts Status

Notes: Figure plots the coefficients (dots) and confidence intervals (lines) for indicators for entrepôt status from 
a country-pair level regression of impacted countries’ log percent welfare gains from a transportation cost reduc-
tion or an infrastructure improvement (left panel) or nontransportation trade cost reduction (right panel) at targeted 
countries, controlling for impacted country GDP, bilateral distance, and targeted country fixed effects. Targeted 
countries receive the cost reduction and impacted countries trade with them. Standard errors are clustered by tar-
geted country.
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points (column 1). The introduction of scale economies leads to a decrease of 9 
basis points. Trade volumes follow a similar pattern. Figure 15 highlights the dis-
tributional effects in terms of welfare (see online Appendix Figure A.16 for trade 
volumes). Scale economies amplify the Brexit impact, especially for European 
countries. Notably, the impact of scale is not well predicted by the nonscale case 
(panel B, Figure 15). We document significant negative welfare impacts on Ireland, 
Iceland, and other Nordic countries that rely on UK feeder routes to get their goods 
to large vessels that ply transoceanic trade (online Appendix Table A.15).

D. Impact of Endogenous Trade Costs on the Network

We evaluate the importance of endogenous trade costs by demonstrating the 
welfare and trade impacts from the two endogenous mechanisms in our model: (i) 
network effects—allowing countries to ship indirectly––and (ii) scale effects—
allowing countries to ship indirectly and take advantage of scale economies. We 
achieve this by studying the physical trade route changes due to the opening of the 
once-fabled Northeast and Northwest Passages through the Arctic Ocean between 
North America, northern Europe, and East Asia as a viable shipping route due 
to global warming. For example, a ship traveling from South Korea to Germany 
would take roughly 34 days via the Suez Canal but only 23 days via the Northeast 
and Northwest Passages (Economist 2018). For every link within the network, we 
compute the difference in sea distance using Dijkstra’s algorithm between world 
maps with and without arctic ice caps (online Appendix A.2). Panel A of Figure 16 
compares existing shipping routes today and shortest ocean-going distance of these 
routes after the Arctic Passage is viable.

We compare three different cases. First, we consider a network-naive exogenous 
trade cost case where we only allow for changes in origin-destination trade costs 
between country pairs for which the direct bilateral distance decreased. Second, for 
all observed links with positive traffic, we recalculate ​​t​kl​​​ using new distances with 

Table 3—Welfare and Trade Impact of Brexit and Arctic Passage Opening, Basis Points

Direct effect Network effect
Total effect  

(network and scale)
(1) (2) (3)

Panel A. Brexit: impact of nontransport trade costs
​Δ​ Average global welfare −2.3 −9.2
​Δ​ Container trade volumes −19.5 −100.7

Panel B. Arctic Passage: impact of endogenous trade costs
​Δ​ Average global welfare 1.4 2.9 6.4
​Δ​ Container trade volumes 23.2 44.0 94.7

Notes: Panel A presents results for Brexit, a 5 percent increase in nontransportation trade costs ​​κ​ij​​​ between the 
United Kingdom and its trading partners. The direct effect of Brexit only accounts for changes in direct trade 
with the United Kingdom or multilateral resistance. The total effect allows for the change in direct UK trade to 
impact trade costs with neighboring countries through the trade network. Panel B presents results for the Arctic 
Passage counterfactual. The direct effect of the passage opening only accounts for direct changes in physical dis-
tance between countries. The network effect results allow for indirect shipping through the trade network as a result 
of the passage opening. The total effect adds in the scale impact.
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the option of traveling through the Arctic Passage and ​​α​2​​​ in equation (11). Here, 
countries without direct connections through the passage—for example, China and 
Ukraine—experience trade cost changes due to the trade network effects. Third, we 
repeat the second case accounting for the impact of scale: as trade costs change, 
trade volumes change, reducing trade costs further.

Assuming exogenous trade costs with our input-output structure, column 1, panel 
B of Table 3 shows that the network-naive and direct effects of the Arctic Passage 
are positive, with aggregate welfare increasing 1.4 basis points, and container trade 
volumes increasing 23 basis points. Endogenizing trade costs to allow for the trade 
network impact of the passage—including indirect shipping—doubles the aggregate 
welfare effect to 2.9 basis points and increases worldwide container volumes by 44 
basis points (column 2, panel B of Table 3). Allowing for both scale and network 
effects triples and doubles the welfare and trade impact relative to the network results.

Panel B in Figure 16 plots the top 20 most impacted countries, showing gains 
are particularly pronounced in East Asian entrepôts like Hong Kong and Singapore 
that disproportionately benefit from the scale economy. Scandinavian countries also 

Figure 15. Welfare Changes––Brexit

Notes: These two plots show the percent change in welfare (the relative price index) of a simulated 5 percent 
increase in trading costs with the United Kingdom. Darker reds reflects a greater increase and blue represents no 
change. Omitted countries are white. Panel A reflects changes if shipping costs remain constant, reflecting only wel-
fare changes due to changes in prices. Panel B allows for a scale economy feedback loop on transportation costs 
for all countries.
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gain due to their geography. Denmark and Finland, which in the baseline first case 
have zero or a small trade diversion impact, gain due to the trade network and scale 
response. Online Appendix Figure A.17 shows changes in the relative wage-adjusted 
price index.

VIII.  Conclusion

This paper studies entrepôts, the trade network they form, and their impact on 
international trade. We characterize the global container shipping network as a 
hub-and-spoke system by documenting that the majority of trade is indirect and 
flows from origins to destinations through entrepôts (hubs). To rationalize these 
stylized facts, we develop a general equilibrium model of world trade with endog-
enous trade costs and entrepôts, estimating both the underlying trade costs on all 
routes, and scale economies. We quantify the impact of the trade network on global 
trade and welfare, highlighting how changes at nodes operate through the network, 
entrepôts, and scale economies to create widespread impacts. We find that infra-
structure investments at entrepôts generate on average ten times the global welfare 
impact relative to investment elsewhere.

While we are singularly focused on containerized shipping because container-
ized trade accounts for the majority of global seaborne trade, the hub-and-spoke 
network is not specific to just containerized trade (Rodrigue, Comtois, and Slack 
2013). Such networks are also prevalent in freight services like UPS or DHL in 

Figure 16. The Opening of the Arctic Passage

Notes: The red lines in panel A indicate counterfactual shipping. Blue lines indicate existing shipping. Their overlap 
is brown. Most global shipping utilize similar routes, which results in many overlapping brown lines. Route width 
reflects the number of containers (TEU). Panel B shows the percent change in welfare of the simulated opening of 
the Arctic Passage for the 20 countries with the largest welfare changes. The first bar reflects only the trade cost 
changes on routes that are directly affected from the opening. The second bar allows for the trade costs to affect 
indirect trade with network effects while the third bar allows for the endogenous response to scale economies.
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addition to air transport. And while our estimates of scale economies are agnostic 
to underlying mechanisms, future work should consider the roles of fixed costs in 
enabling the scale economies in containerized shipping, especially the costs incurred 
by potential oligopolies in setting shipping networks and the endogenous creation 
of firm-specific hub-and-spoke networks. In particular, we can account for leg-level 
monopolies and variable markups but not within-firm spillovers in sea route selec-
tion. While sector-specific research has been done on these networks, future work 
should consider a tractable general equilibrium framework able to quantify welfare 
effects.
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